ClickHouse - Lightning Fast Analytics for Everyone

Robert Schulze
ClickHouse Inc.
robert@clickhouse.com

Ryadh Dahimene
ClickHouse Inc.
ryadh@clickhouse.com

ABSTRACT

Over the past several decades, the amount of data being stored
and analyzed has increased exponentially. Businesses across in-
dustries and sectors have begun relying on this data to improve
products, evaluate performance, and make business-critical deci-
sions. However, as data volumes have increasingly become internet-
scale, businesses have needed to manage historical and new data
in a cost-effective and scalable manner, while analyzing it using a
high number of concurrent queries and an expectation of real-time
latencies (e.g. less than one second, depending on the use case).

This paper presents an overview of ClickHouse, a popular open-
source OLAP database designed for high-performance analytics
over petabyte-scale data sets with high ingestion rates. Its storage
layer combines a data format based on traditional log-structured
merge (LSM) trees with novel techniques for continuous trans-
formation (e.g. aggregation, archiving) of historical data in the
background. Queries are written in a convenient SQL dialect and
processed by a state-of-the-art vectorized query execution engine
with optional code compilation. ClickHouse makes aggressive use
of pruning techniques to avoid evaluating irrelevant data in queries.
Other data management systems can be integrated at the table
function, table engine, or database engine level. Real-world bench-
marks demonstrate that ClickHouse is amongst the fastest analyti-
cal databases on the market.

PVLDB Reference Format:

Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene,

and Alexey Milovidov. ClickHouse - Lightning Fast Analytics for Everyone.
PVLDB, 17(12): 3731 - 3744, 2024.

doi:10.14778/3685800.3685802

1 INTRODUCTION

This paper describes ClickHouse, a columnar OLAP database de-
signed for high-performance analytical queries on tables with tril-
lions of rows and hundreds of columns. ClickHouse was started
in 2009 as a filter and aggregation operator for web-scale log file
data! and was open sourced in 2016. Figure 1 illustrates when major
features described in this paper were introduced to ClickHouse.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685802

1Blog post: clickhou.se/evolution

Tom Schreiber
ClickHouse Inc.
tom@clickhouse.com

3731

Ilya Yatsishin
ClickHouse Inc.
iyatsishin@clickhouse.com

Alexey Milovidov
ClickHouse Inc.
milovidov@clickhouse.com

ClickHouse is designed to address five key challenges of modern
analytical data management:

1. Huge data sets with high ingestion rates. Many data-
driven applications in industries like web analytics, finance, and
e-commerce are characterized by huge and continuously grow-
ing amounts of data. To handle huge data sets, analytical databases
must not only provide efficient indexing and compression strategies,
but also allow data distribution across multiple nodes (scale-out)
as single servers are limited to several dozen terabytes of storage.
Moreover, recent data is often more relevant for real-time insights
than historical data. As a result, analytical databases must be able
to ingest new data at consistently high rates or in bursts, as well as
continuously "deprioritize” (e.g. aggregate, archive) historical data
without slowing down parallel reporting queries.

2. Many simultaneous queries with an expectation of low
latencies. Queries can generally be categorized as ad-hoc (e.g.
exploratory data analysis) or recurring (e.g. periodic dashboard
queries). The more interactive a use case is, the lower query laten-
cies are expected, leading to challenges in query optimization and
execution. Recurring queries additionally provide an opportunity
to adapt the physical database layout to the workload. As a result,
databases should offer pruning techniques that allow optimizing
frequent queries. Depending on the query priority, databases must
further grant equal or prioritized access to shared system resources
such as CPU, memory, disk and network I/O, even if a large number
of queries run simultaneously.

3. Diverse landscapes of data stores, storage locations, and
formats. To integrate with existing data architectures, modern
analytical databases should exhibit a high degree of openness to
read and write external data in any system, location, or format.

4. A convenient query language with support for perfor-
mance introspection. Real-world usage of OLAP databases poses
additional "soft" requirements. For example, instead of a niche pro-
gramming language, users often prefer to interface with databases
in an expressive SQL dialect with nested data types and a broad
range of regular, aggregation, and window functions. Analytical
databases should also provide sophisticated tooling to introspect
the performance of the system or individual queries.

5. Industry-grade robustness and versatile deployment. As
commodity hardware is unreliable, databases must provide data
replication for robustness against node failures. Also, databases
should run on any hardware, from old laptops to powerful servers.
Finally, to avoid the overhead of garbage collection in JVM-based
programs and enable bare-metal performance (e.g. SIMD), databases
are ideally deployed as native binaries for the target platform.

https://doi.org/10.14778/3685800.3685802
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685802
https://clickhou.se/evolution

2009 2012 2016 2017 2018
e g e Q e
Start of Open : Mutations
development source (Section 3)

First intégration
engine (Kafka)
(Section 5)

Productién launch

2019
°

New exécution
framework
(Section 4)

2020 2021 2022 2023 2024
e ¢ ° ¢ Q
~ Improved i ClickHouse Cloud : e
introspection tools (Section 8)
(Section 6)

Column statisfics (section 3)
CPU and 10 scheduling
(Section 4)

Async i.nserts,
Projections
(Section 3)

Figure 1: ClickHouse timeline.

2 ARCHITECTURE

As shown by Figure 2, the ClickHouse engine is split into three main
layers: the query processing layer (described in Section 4), the stor-
age layer (Section 3), and the integration layer (Section 5). Besides
these, an access layer manages user sessions and communication
with applications via different protocols. There are orthogonal com-
ponents for threading, caching, role-based access control, backups,
and continuous monitoring. ClickHouse is built in C++ as a single,
statically-linked binary without dependencies.

Query processing follows the traditional paradigm of parsing in-
coming queries, building and optimizing logical and physical query
plans, and execution. ClickHouse uses a vectorized execution model
similar to MonetDB/X100 [11], in combination with opportunistic
code compilation [53]. Queries can be written in a feature-rich SQL
dialect, PRQL [76], or Kusto’s KQL [50].

The storage layer consists of different table engines that encap-
sulate the format and location of table data. Table engines fall into
three categories: The first category is the MergeTree™ family of
table engines which represent the primary persistence format in
ClickHouse. Based on the idea of LSM trees [60], tables are split
into horizontal, sorted parts, which are continuously merged by
a background process. Individual MergeTree* table engines differ
in the way the merge combines the rows from its input parts. For
example, rows can be aggregated or replaced, if outdated.

The second category are special-purpose table engines, which
are used to speed up or distribute query execution. This category
includes in-memory key-value table engines called dictionaries. A
dictionary caches the result of a query periodically executed against
an internal or external data source. This significantly reduces ac-
cess latencies in scenarios, where a degree of data staleness can
be tolerated.? Other examples of special-purpose table engines in-
clude a pure in-memory engine used for temporary tables and the
Distributed table engine for transparent data sharding (see below).

The third category of table engines are virtual table engines for
bidirectional data exchange with external systems such as relational
databases (e.g. PostgreSQL, MySQL), publish/subscribe systems (e.g.
Kafka, RabbitMQ [24]), or key/value stores (e.g. Redis). Virtual
engines can also interact with data lakes (e.g. Iceberg, DeltaLake,
Hudi [36]) or files in object storage (e.g. AWS S3, Google GCP).

ClickHouse supports sharding and replication of tables across
multiple cluster nodes for scalability and availability. Sharding par-
titions a table into a set of table shards according to a sharding
expression. The individual shards are mutually independent ta-
bles and typically located on different nodes. Clients can read and
write shards directly, i.e. treat them as separate tables, or use the
Distributed special table engine, which provides a global view of

2Blog post: clickhou.se/dictionaries

3732

all table shards. The main purpose of sharding is to process data
sets which exceed the capacity of individual nodes (typically, a few
dozens terabytes of data). Another use of sharding is to distribute
the read-write load for a table over multiple nodes, i.e., load balanc-
ing. Orthogonal to that, a shard can be replicated across multiple
nodes for tolerance against node failures. To that end, each Merge-
Tree” table engine has a corresponding ReplicatedMergeTree* engine
which uses a multi-master coordination scheme based on Raft con-
sensus [59] (implemented by Keeper®, a drop-in replacement for
Apache Zookeeper written in C++) to guarantee that every shard
has, at all times, a configurable number of replicas. Section 3.6 dis-
cusses the replication mechanism in detail. As an example, Figure 2
shows a table with two shards, each replicated to two nodes.

Finally, the ClickHouse database engine can be operated in on-
premise, cloud, standalone, or in-process modes. In the on-premise
mode, users set up ClickHouse locally as a single server or multi-
node cluster with sharding and/or replication. Clients communi-
cate with the database over the native, MySQL’s, PostgreSQL’s
binary wire protocols, or an HTTP REST APL The cloud mode is
represented by ClickHouse Cloud, a fully managed and autoscal-
ing DBaaS offering. While this paper focuses on the on-premise
mode, we plan to describe the architecture of ClickHouse Cloud in
a follow-up publication. The standalone mode turns ClickHouse
into a command line utility for analyzing and transforming files,
making it a SQL-based alternative to Unix tools like cat and grep.*
While this requires no prior configuration, the standalone mode is
restricted to a single server. Recently, an in-process mode called
chDB [15] has been developed for interactive data analysis use cases
like Jupyter notebooks [37] with Pandas dataframes [61]. Inspired
by DuckDB [67], chDB embeds ClickHouse as a high-performance
OLAP engine into a host process. Compared to the other modes,
this allows to pass source and result data between the database
engine and the application efficiently without copying as they run
in the same address space.’

3 STORAGE LAYER

This section discusses MergeTree* table engines as ClickHouse’s
native storage format. We describe their on-disk representation and
discuss three data pruning techniques in ClickHouse. Afterwards,
we present merge strategies which continuously transform data
without impacting simultaneous inserts. Finally, we explain how
updates and deletes are implemented, as well as data deduplication,
data replication, and ACID compliance.

3Blog post: clickhou.se/keeper
“Blog posts: clickhou.se/local, clickhou.se/local-fastest-tool
SBlog post: clickhou.se/chdb-rocket-engine

https://clickhou.se/dictionaries
https://clickhou.se/keeper
https://clickhou.se/local
https://clickhou.se/local-fastest-tool
https://clickhou.se/chdb-rocket-engine

Server on-premise

Il Node]

QUERY PROCESSING LAYER (SEC. 4)

S

SQL Query—»@—ASTm Logical Plan —»@IWETEINENN={TI [T Physical Plan External
Il DB Engine DBMS
Plan Executor {33 ﬁ
4 4
I
Cloud @ @ @ Data Lakes/
___ Object stores
MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL L
- TABLE ENGINES TABLE ENGINES TABLE ENGINES &
lll- DB Engine
Inserts — Parts 2» Merges Fast lookups Pub/sub
— (SEC. 5) systems
=) =S
_—— Memory RAM storage =
Standalone — K-) i| = Thread pools
=) Command-line — DISGNECI Data sharding @ ot KV stores
- aches
; - DISTRIBUTED
lll: DB Engine DATA PROCESSING
) 2] RBAC
- Node 1 lnseiis Erets Il Node 3 SR
In-process l @ Backups K
Replicated 8 Replicated o Users
@ Python process - MergeTree Distributed MergeTree L “\+ Monitoring l
o .
Il DB Engine = ¢/ Shard-1replica Shard-2 replica
. S ™~ e E COMPONENTS i)
g,- Keeper i . Apps
o ll- Node2 7~ ll Node 4 » © User sessions
&S Replication
Replicated coordination Replicated &5 Wire protocols
MEI9ElIEE UERUICE Native, gRPC, HTTP, MySQL,
Shard-1 replica Shard-2 replica PostgreSQL Drivers
JDBC / ODBC/
"""""""""""""""" STORAGE LAYER (SEC. 3) R Python/Go /...
Figure 2: The high-level architecture of the ClickHouse database engine.
3.1 On—Disk Format Inactive part Active part ~=--» Part merge
Each table in the MergeTree” table engine is organized as a collec-
. . . —_—
tion of immutable table parts. A part is created whenever a set of INSERT LELS "
rows is inserted into the table. Parts are self-contained in the sense
. : . . INSERT ——— > Part - » Part
that they include all metadata required to interpret their content
without additional lookups to a central catalog. To keep the number o L "
. . . > Part
of parts per table low, a background merge job periodically com- INSERT art
bines multiple smaller parts into a larger part until a configurable ASYNC Part
part size is reached (150 GB by default). Since parts are sorted by INSERT >
the table’s primary key columns (see Section 3.2), efficient k-way BUffer —> Part r---seesoeseeeeeeeeees >
merge sort [40] is used for merging. The source parts are marked ASYNC
as inactive and eventually deleted as soon as their reference count INSERT
drops to zero, i.e. no further queries read from them.
INSERT ——— > Part

Rows can be inserted in two modes: In synchronous insert mode,
each INSERT statement creates a new part and appends it to the
table. To minimize the overhead of merges, database clients are
encouraged to insert tuples in bulk, e.g. 20,000 rows at once. How-
ever, delays caused by client-side batching are often unacceptable
if the data should be analyzed in real-time. For example, observabil-
ity use cases frequently involve thousands of monitoring agents
continuously sending small amounts of event and metrics data.
Such scenarios can utilize the asynchronous insert mode, in which
ClickHouse buffers rows from multiple incoming INSERTSs into the
same table and creates a new part only after the buffer size exceeds
a configurable threshold or a timeout expires.

3733

Figure 3: Inserts and merges for MergeTree*-engine tables.

Figure 3 illustrates four synchronous and two asynchronous
inserts into a MergeTree*-engine table. Two merges reduced the
number of active parts from initially five to two.

Compared to LSM trees [58] and their implementation in various
databases [13, 26, 56], ClickHouse treats all parts as equal instead
of arranging them in a hierarchy. As a result, merges are no longer
limited to parts in the same level. Since this also forgoes the implicit

chronological ordering of parts, alternative mechanisms for updates
and deletes not based on tombstones are required (see Section 3.4).
ClickHouse writes inserts directly to disk while other LSM-tree-
based stores typically use write-ahead logging (see Section 3.7).

A part corresponds to a directory on disk, containing one file
for each column. As an optimization, the columns of a small part
(smaller than 10 MB by default) are stored consecutively in a single
file to increase the spatial locality for reads and writes. The rows of a
part are further logically divided into groups of 8192 records, called
granules. A granule represents the smallest indivisible data unit
processed by the scan and index lookup operators in ClickHouse.
Reads and writes of on-disk data are, however, not performed at the
granule level but at the granularity of blocks, which combine multi-
ple neighboring granules within a column. New blocks are formed
based on a configurable byte size per block (by default 1 MB), i.e.,
the number of granules in a block is variable and depends on the
column’s data type and distribution. Blocks are furthermore com-
pressed to reduce their size and I/O costs. By default, ClickHouse
employs LZ4 [75] as a general-purpose compression algorithm,
but users can also specify specialized codecs like Gorilla [63] or
FPC [12] for floating-point data. Compression algorithms can also
be chained. For example, it is possible to first reduce logical re-
dundancy in numeric values using delta coding [23], then perform
heavy-weight compression, and finally encrypt the data using an
AES codec. Blocks are decompressed on-the-fly when they are
loaded from disk into memory. To enable fast random access to
individual granules despite compression, ClickHouse additionally
stores for each column a mapping that associates every granule id
with the offset of its containing compressed block in the column
file and the offset of the granule in the uncompressed block.

Columns can further be dictionary-encoded [2, 77, 81] or made
nullable using two special wrapper data types: LowCardinality(T)
replaces the original column values by integer ids and thus signifi-
cantly reduces the storage overhead for data with few unique values.
Nullable(T) adds an internal bitmap to column T, representing
whether column values are NULL or not.

Finally, tables can be range, hash, or round-robin partitioned us-
ing arbitrary partitioning expressions. To enable partition pruning,
ClickHouse additionally stores the partitioning expression’s mini-
mum and maximum values for each partition. Users can optionally
create more advanced column statistics (e.g., HyperLogLog [30] or
t-digest [28] statistics) that also provide cardinality estimates.

3.2 Data Pruning

In most use cases, scanning petabytes of data just to answer a single
query is too slow and expensive. ClickHouse supports three data
pruning techniques that allow skipping the majority of rows during
searches and therefore speed up queries significantly.

First, users can define a primary key index for a table. The pri-
mary key columns determine the sort order of the rows within
each part, i.e. the index is locally clustered. ClickHouse additionally
stores, for every part, a mapping from the primary key column
values of each granule’s first row to the granule’s id, i.e. the index is
sparse [31]. The resulting data structure is typically small enough to
remain fully in-memory, e.g., only 1000 entries are required to index
8.1 million rows. The main purpose of a primary key is to evaluate

3734

hits table with EventTime as primary key

Row EventTime RegionID URL
-} 2023-10-19 17:03:05.154 EMEA https://...
gei -
5.8,191 2023-10-19 17:03:07.490 APAC https://...
8,192 | 2023-10-19 17:03:07.492 APAC https://...
g1 -
5116,383 2023-10-19 17:03:09.838 AMER https://...
Granule
selection Primary key index SELECT
| count() AS PageViews
ge 2023-10-19 17:03:05.154 | FROM hits
g1 492 WHERE

2023-10-19 17:03:07.
. EventTime>='2023-12-09'

Index lookup

Figure 4: Evaluating filters with a primary key index.

equality and range predicates for frequently filtered columns using
binary search instead of sequential scans (Section 4.4). The local
sorting can furthermore be exploited for part merges and query
optimization, e.g. sort-based aggregation or to remove sorting op-
erators from the physical execution plan when the primary key
columns form a prefix of the sorting columns.

Figure 4 shows a primary key index on column EventTime for
a table with page impression statistics. Granules that match the
range predicate in the query can be found by binary searching the
primary key index instead of scanning EventTime sequentially.

Second, users can create table projections, i.e., alternative ver-
sions of a table that contain the same rows sorted by a different
primary key [71]. Projections allow to speed up queries that filter
on columns different than the main table’s primary key at the cost
of an increased overhead for inserts, merges, and space consump-
tion. By default, projections are populated lazily only from parts
newly inserted into the main table but not from existing parts un-
less the user materializes the projection in full. The query optimizer
chooses between reading from the main table or a projection based
on estimated I/O costs. If no projection exists for a part, query
execution falls back to the corresponding main table part.

Third, skipping indices provide a lightweight alternative to pro-
jections. The idea of skipping indices is to store small amounts of
metadata at the level of multiple consecutive granules which allows
to avoid scanning irrelevant rows. Skipping indices can be created
for arbitrary index expressions and using a configurable granularity,
i.e. number of granules in a skipping index block. Available skipping
index types include: 1. Min-max indices [51], storing the minimum
and maximum values of the index expression for each index block.
This index type works well for locally clustered data with small
absolute ranges, e.g. loosely sorted data. 2. Set indices, storing a
configurable number of unique index block values. These indexes
are best used with data with a small local cardinality, i.e. "clumped
together" values. 3. Bloom filter indices [9] build for row, token, or
n-gram values with a configurable false positive rate. These indices
support text search [73], but unlike min-max and set indices, they
cannot be used for range or negative predicates.

3.3 Merge-time Data Transformation

Business intelligence and observability use cases often need to
handle data generated at constantly high rates or in bursts. Also,
recently generated data is typically more relevant for meaning-
ful real-time insights than historical data. Such use cases require
databases to sustain high data ingestion rates while continuously
reducing the volume of historical data through techniques like ag-
gregation or data aging. ClickHouse allows a continuous incremen-
tal transformation of existing data using different merge strategies.
Merge-time data transformation does not compromise the perfor-
mance of INSERT statements, but it cannot guarantee that tables
never contain unwanted (e.g. outdated or non-aggregated) values. If
necessary, all merge-time transformations can be applied at query
time by specifying the keyword FINAL in SELECT statements.

Replacing merges retain only the most recently inserted ver-
sion of a tuple based on the creation timestamp of its containing
part, older versions are deleted. Tuples are considered equivalent if
they have the same primary key column values. For explicit control
over which tuple is preserved, it is also possible to specify a special
version column for comparison. Replacing merges are commonly
used as a merge-time update mechanism (normally in use cases
where updates are frequent), or as an alternative to insert-time data
deduplication (Section 3.5).

Aggregating merges collapse rows with equal primary key
column values into an aggregated row. Non-primary key columns
must be of a partial aggregation state that holds the summary values.
Two partial aggregation states, e.g. a sum and a count for avg(),
are combined into a new partial aggregation state. Aggregating
merges are typically used in materialized views instead of normal
tables. Materialized views are populated based on a transformation
query against a source table. Unlike other databases, ClickHouse
does not refresh materialized views periodically with the entire
content of the source table. Materialized views are rather updated
incrementally with the result of the transformation query when a
new part is inserted into the source table.

Figure 5 shows a materialized view defined on a table with page
impression statistics. For new parts inserted into the source table,
the transformation query computes the maximum and average
latencies, grouped by region, and inserts the result into a material-
ized view. Aggregation functions avg() and max() with extension
-State return partial aggregation states instead of actual results. An
aggregating merge defined for the materialized view continuously
combines partial aggregation states in different parts. To obtain the
final result, users consolidate the partial aggregation states in the
materialized view using avg() and max()) with -Merge extension.

TTL (time-to-live) merges provide aging for historical data.
Unlike deleting and aggregating merges, TTL merges process only
one part at a time. TTL merges are defined in terms of rules with
triggers and actions. A trigger is an expression computing a times-
tamp for every row, which is compared against the time at which
the TTL merge runs. While this allows users to control actions at
row granularity, we found it sufficient to check whether all rows
satisfy a given condition and run the action on the entire part.
Possible actions include 1. move the part to another volume (e.g.
cheaper and slower storage), 2. re-compress the part (e.g. with a

3735

Source table insert statements

INSERT INTO hits VALUES INSERT INTO hits VALUES
(..., EMEA, 100, ...), (..., APAC, 70, ...),
(..., EMEA, 200, ...), (..., APAC, 50, ...),
(..., APAC, 80, ...) (..., APAC, 60, ...)
Materialized view DDL statement
CREATE MATERIALIZED VIEW mv
ENGINE = AggregatingMergeTree
PRIMARY KEY RegionID
A
SELECT Transformation query
i RegionID, A
maxState(Latency) AS MaxLatency '
i avgState(Latency) AS Avglatency
——i FROM hits S
i GROUP BY RegionID
Materialized view parts
Part Part
Region Max Average Region Max Average
ID Latency Latency ID Latency Latency
EMEA 200 300, 2 APAC 70 180, 3
APAC 80 80, 1 i / 1

partial states: max sum count

1 /
Aggregating merge
4

Merged part Query for obtaining the final result

SELECT
Region Max Average RegionID,
1D Latency | Latency maxMerge(MaxLatency),
EMEA 260 300, 2 avgMerge(AvglLatency),
APAC 80 260, 4 FROM mv

GROUP BY RegionID

Figure 5: Aggregating merges in materialized views.

more heavy-weight codec), 3. delete the part, and 4. roll-up, i.e.
aggregate the rows using a grouping key and aggregate functions.

As an example, consider the logging table definition in Listing 1.
ClickHouse will move parts with timestamp column values older
than one week to slow but inexpensive S3 object storage.

CREATE TABLE tab(ts DateTime, msg String)
ENGINE MergeTree PRIMARY KEY ts
TTL (ts + INTERVAL 1 WEEK) TO VOLUME 's3'

Listing 1: Move part to object storage after one week.

3.4 Updates and Deletes

The design of the MergeTree™ table engines favors append-only
workloads, yet some use cases require to modify existing data occa-
sionally, e.g. for regulatory compliance. Two approaches for updat-
ing or deleting data exist, neither of which block parallel inserts.

Mutations rewrite all parts of a table in-place. To prevent a table
(delete) or column (update) from doubling temporarily in size, this
operation is non-atomic, i.e. parallel SELECT statements may read
mutated and non-mutated parts. Mutations guarantee that the data
is physically changed at the end of the operation. Delete mutations
are still expensive as they rewrite all columns in all parts.

As an alternative, lightweight deletes only update an internal
bitmap column, indicating if a row is deleted or not. ClickHouse
amends SELECT queries with an additional filter on the bitmap
column to exclude deleted rows from the result. Deleted rows are
physically removed only by regular merges at an unspecified time
in future. Depending on the column count, lightweight deletes can
be much faster than mutations, at the cost of slower SELECTs.

Update and delete operations performed on the same table are
expected to be rare and serialized to avoid logical conflicts.

3.5 Idempotent Inserts

A problem that frequently occurs in practice is how clients should
handle connection timeouts after sending data to the server for
insertion into a table. In this situation, it is difficult for clients to
distinguish between whether the data was successfully inserted
or not. The problem is traditionally solved by re-sending the data
from the client to the server and relying on primary key or unique
constraints to reject duplicate inserts. Databases perform the re-
quired point lookups quickly using index structures based on binary
trees [39, 68], radix trees [45], or hash tables [29]. Since these data
structures index every tuple, their space and update overhead be-
comes prohibitive for large data sets and high ingest rates.

ClickHouse provides a more light-weight alternative based on
the fact that each insert eventually creates a part. More specifically,
the server maintains hashes of the N last inserted parts (e.g. N=100)
and ignores re-inserts of parts with a known hash. Hashes for
non-replicated and replicated tables are stored locally, respectively,
in Keeper. As a result, inserts become idempotent, i.e. clients can
simply re-send the same batch of rows after a timeout and assume
that the server takes care of deduplication. For more control over
the deduplication process, clients can optionally provide an insert
token that acts as a part hash. While hash-based deduplication
incurs an overhead associated with hashing the new rows, the cost
of storing and comparing hashes is negligible.

3.6 Data Replication

Replication is a prerequisite for high availability (tolerance against
node failures), but also used for load balancing and zero-downtime
upgrades [14]. In ClickHouse, replication is based on the notion of
table states which consist of a set of table parts (Section 3.1) and
table metadata, such as column names and types. Nodes advance the
state of a table using three operations: 1. Inserts add a new part to
the state, 2. merges add a new part and delete existing parts to/from
the state, 3. mutations and DDL statements add parts, and/or delete
parts, and/or change table metadata, depending on the concrete
operation. Operations are performed locally on a single node and
recorded as a sequence of state transition in a global replication log.

The replication log is maintained by an ensemble of typically
three ClickHouse Keeper processes which use the Raft consensus
algorithm [59] to provide a distributed and fault-tolerant coordi-
nation layer for a cluster of ClickHouse nodes. All cluster nodes
initially point to the same position in the replication log. While
the nodes execute local inserts, merges, mutations, and DDL state-
ments, the replication log is replayed asynchronously on all other
nodes. As a result, replicated tables are only eventually consistent,
i.e. nodes can temporarily read old table states while converging

3736

— Download Part — Add Entry —> Fetch Entry
- Node 1 - Node 2 - Node 3
4)—
INSERT —— PartA «—— (2 © | PartA
—— PartA
merge Part C
INSERT—> Part B (6— PartB
N y L N p N /I =N
1 ﬁ) @ 6 ©® xi)
Keeper Replication Log Insert Insert Merge

Figure 6: Replication in a cluster of three nodes.

towards the latest state. Most aforementioned operations can alter-
natively be executed synchronously until a quorum of nodes (e.g. a
majority of nodes or all nodes) adopted the new state.

As an example, Figure 6 shows an initially empty replicated
table in a cluster of three ClickHouse nodes. Node 1 first receives
two insert statements and records them (1) (2)) in the replication
log stored in the Keeper ensemble. Next, Node 2 replays the first
log entry by fetching it (3)) and downloading the new part from
Node 1 ((4)), whereas Node 3 replays both log entries (3) @) (5) (6)).
Finally, Node 3 merges both parts to a new part, deletes the input
parts, and records a merge entry in the replication log ((7)).

Three optimizations to speed up synchronization exist: First,
new nodes added to the cluster do replay the replication log from
scratch, instead they simply copy the state of the node which wrote
the last replication log entry. Second, merges are replayed by re-
peating them locally or by fetching the result part from another
node. The exact behavior is configurable and allows to balance CPU
consumption and network I/O. For example, cross-data-center repli-
cation typically prefers local merges to minimize operating costs.
Third, nodes replay mutually independent replication log entries in
parallel. This includes, for example, fetches of new parts inserted
consecutively into the same table, or operations on different tables.

3.7 ACID Compliance

To maximize the performance of concurrent read and write oper-
ations, ClickHouse avoids latching as much as possible. Queries
are executed against a snapshot of all parts in all involved tables
created at the beginning of the query. This ensures that new parts
inserted by parallel INSERTs or merges (Section 3.1) do not partici-
pate in execution. To prevent parts from being modified or removed
simultaneously (Section 3.4), the reference count of the processed
parts is incremented for the duration of the query. Formally, this
corresponds to snapshot isolation realized by an MVCC variant [6]
based on versioned parts. As a result, statements are generally not
ACID-compliant except for the rare case that concurrent writes at
the time the snapshot is taken each affect only a single part.

In practice, most of ClickHouse’s write-heavy decision making
use cases even tolerate a small risk of losing new data in case of a
power outage. The database takes advantage of this by not forcing a
commit (fsync) of newly inserted parts to disk by default, allowing
the kernel to batch writes at the cost of forgoing atomicity.

lil- Node 1 il Node 2 - Node m
ilcal{c2 Cn|i| |i|C1/[c2 Cn i i|c1]|c2 Cn i
Nl		
Il		
Vo		
Vo		
\ Il) d i
v\\ x rs
lll- Node 1 N
1 C2 Cn Table shards are processed
il el et Sl g in parallel by multiple nodes
o : I
FEEESEETITERTITTTRTTTTY "--.| Data chunks are processed

in parallel by a node’s
L multiple CPU cores

Data elements are
processed in parallel by a
CPU core's SIMD units

Figure 7: Parallelization across SIMD units, cores and nodes.

4 QUERY PROCESSING LAYER

As illustrated by Figure 7, ClickHouse parallelizes queries at the
level of data elements, data chunks, and table shards. Multiple
data elements can be processed within operators at once using
SIMD instructions. On a single node, the query engine executes
operators simultaneously in multiple threads. ClickHouse uses the
same vectorization model as MonetDB/X100 [11], i.e. operators
produce, pass, and consume multiple rows (data chunks) instead of
single rows to minimize the overhead of virtual function calls. If a
source table is split into disjoint table shards, multiple nodes can
scan the shards simultaneously. As a result, all hardware resources
are fully utilized, and query processing can be scaled horizontally
by adding nodes and vertically by adding cores.

The rest of this section first describes parallel processing at
data element, data chunk, and shard granularity in more detail.
We then present selected key optimizations to maximize query
performance. Finally, we discuss how ClickHouse manages shared
system resources in the presence of simultaneous queries.

4.1 SIMD Parallelization

Passing multiple rows between operators creates an opportunity
for vectorization. Vectorization is either based on manually written
intrinsics [64, 80] or compiler auto-vectorization [25]. Code that
benefit from vectorization is compiled into different compute ker-
nels. For example, the inner hot loop of a query operator can be im-
plemented in terms of a non-vectorized kernel, an auto-vectorized
AVX2kernel, and a manually vectorized AVX-512 kernel. The fastest
kernel is chosen at runtime based on the cpuid instruction.® This
approach allows ClickHouse to run on systems as old as 15 years
(requiring SSE 4.2 as a minimum), while still providing significant
speedups on recent hardware.

®Blog post: clickhou.se/cpu-dispatch

3737

4.2 Multi-Core Parallelization

ClickHouse follows the conventional approach [31] of transforming
SQL queries into a directed graph of physical plan operators. The
input of the operator plan is represented by special source opera-
tors that read data in the native or any of the supported 3rd-party
formats (see Section 5). Likewise, a special sink operator converts
the result into the desired output format. The physical operator
plan is unfolded at query compilation time into independent exe-
cution lanes based on a configurable maximum number of worker
threads (by default, the number of cores) and the source table size.
Lanes decompose the data to be processed by parallel operators into
non-overlapping ranges. To maximize the opportunity for parallel
processing, lanes are merged as late as possible.

As an example, the box for Node 1 in Figure 8 shows the operator
graph of a typical OLAP query against a table with page impres-
sion statistics. In the first stage, three disjoint ranges of the source
table are filtered simultaneously. A Repartition exchange opera-
tor dynamically routes result chunks between the first and second
stages to keep the processing threads evenly utilized. Lanes may
become imbalanced after the first stage if the scanned ranges have
significantly different selectivities. In the second stage, the rows
that survived the filter are grouped by RegionID. The Aggregate
operators maintain local result groups with RegionID as a grouping
column and a per-group sum and count as a partial aggregation
state for avg (). The local aggregation results are eventually merged
by a GroupStateMerge operator into a global aggregation result.
This operator is also a pipeline breaker, i.e., the third stage can only
start once the aggregation result has been fully computed. In the
third stage, the result groups are first divided by a Distribute ex-
change operator into three equally large disjoint partitions, which
are then sorted by AvglLatency. Sorting is performed in three steps:
First, ChunkSort operators sort the individual chunks of each par-
tition. Second, StreamSort operators maintain a local sorted result
which is combined with incoming sorted chunks using 2-way merge
sorting. Finally, a MergeSort operator combines the local results
using k-way sorting to obtain the final result.

Operators are state machines and connected to each other via
input and output ports. The three possible states of an operator
are need-chunk, ready, and done. To move from need-chunk to
ready, a chunk is placed in the operator’s input port. To move
from ready to done, the operator processes the input chunk and
generates an output chunk. To move from done to need-chunk, the
output chunk is removed from the operator’s output port. The first
and third state transitions in two connected operators can only be
performed in a combined step. Source operators (sink operators)
only have states ready and done (need-chunk and done).

Worker threads continuously traverse the physical operator plan
and perform state transitions. To keep CPU caches hot, the plan con-
tains hints that the same thread should process consecutive opera-
tors in the same lane. Parallel processing happens both horizontally
across disjoint inputs within a stage (e.g. in Figure 8, the Aggregate
operators are executed concurrently) and vertically across stages
not separated by pipeline breakers (e.g. in Figure 8, the Filter and
Aggregate operator in the same lane can run simultaneously). To

https://clickhou.se/cpu-dispatch

SELECT RegionID, avg(Latency) AS AvglLatency
FROM hits

WHERE URL "https://clickhouse.com’

GROUP BY RegionID

ORDER BY AvgLatency DESC

LIMIT 3

[l Node 1
PrettyTableFormat
4
Limit

ry
MergeSort

[StreamSort] [StreamSort] (StreamSort]
(ChunkSort]\(ChunkSort]/,(ChunkSort)
4

Distribute

Y
[GroupStateMerge B

3
(_ Aggregate (Aggregate | Aggregate |
[

Repartition

MergeTreeScan | MergeTreeScan (MergeTreeScan

RegionID

FILTER STAGE AGGREGATION STAGE SORTING STAGE

HITS TABLE

URL Latency

Il Node 2

li- NODE N

(Aggrégate j/J Aggregate J
T

[Aggregate

Repartition
1 .
MergeTreeScan (MergeTreeScan| [{MergeTreeScan)
HITS TABLE
RegionID URL Latency

Figure 8: A physical operator plan with three lanes.

avoid over and undersubscription when new queries start, or con-
current queries finish, the degree of parallelism can be changed mid-
query between one and the maximum number of worker threads
for the query specified at query start (see Section 4.5).

Operators can further affect query execution at runtime in two
ways. First, operators can dynamically create and connect new
operators. This is mainly used to switch to external aggregation,
sort, or join algorithms instead of canceling a query when the
memory consumption exceeds a configurable threshold. Second,
operators can request worker threads to move into an asynchronous
queue. This provides more effective use of worker threads when
waiting for remote data.

3738

ClickHouse’s query execution engine and morsel-driven par-
allelism [44] are similar in that lanes are normally executed on
different cores / NUMA sockets and that worker threads can steal
tasks from other lanes. Also, there is no central scheduling com-
ponent; instead, worker threads select their tasks individually by
continuously traversing the operator plan. Unlike morsel-driven
parallelism, ClickHouse bakes the maximum degree of parallelism
into the plan and uses much bigger ranges to partition the source
table compared to default morsel sizes of ca. 100.000 rows. While
this may in some cases cause stalls (e.g. when the runtime of filter
operators in different lanes differ vastly) we find that liberal use
of exchange operators such as Repartition at least avoids such
imbalances from accumulating across stages.

4.3 Multi-Node Parallelization

If the source table of a query is sharded, the query optimizer on
the node that received the query (initiator node) tries to perform as
much work as possible on other nodes. Results from other nodes
can be integrated into different points of the query plan. Depending
on the query, remote nodes may either 1. stream raw source table
columns to the initiator node, 2. filter the source columns and send
the surviving rows, 3. execute filter and aggregation steps and send
local result groups with partial aggregation states, or 4. run the
entire query including filters, aggregation, and sorting.

Node 2 ... N in Figure 8 show plan fragments executed on other
nodes holding shards of the hits table. These nodes filter and
group the local data and send the result to the initiator node. The
GroupStateMerge operator on node 1 merges the local and remote
results before the results groups are finally sorted.

4.4 Holistic Performance Optimization

This section presents selected key performance optimizations ap-
plied to different stages of query execution.

Query optimization. The first set of optimizations is applied on
top of a semantic query representation obtained from the query’s
AST. Examples of such optimizations include constant folding
(e.g. concat(lower(’a’),upper(’b’)) becomes ’aB’), extracting
scalars from certain aggregation functions (e.g. sum(ax2) becomes
2 * sum(a)), common subexpression elimination, and transforming
disjunctions of equality filters to IN-lists (e.g. x=c OR x=d becomes
x IN (c,d)). The optimized semantic query representation is sub-
sequently transformed to a logical operator plan. Optimizations on
top of the logical plan include filter pushdown, reordering function
evaluation and sorting steps, depending on which one is estimated
to be more expensive. Finally, the logical query plan is transformed
into a physical operator plan. This transformation can exploit the
particularities of the involved table engines. For example, in the
case of a MergeTree*-table engine, if the ORDER BY columns form a
prefix of the primary key, the data can be read in disk order, and
sorting operators can be removed from the plan. Also, if the group-
ing columns in an aggregation form a prefix of the primary key,
ClickHouse can use sort aggregation [33], i.e. aggregate runs of the
same value in the pre-sorted inputs directly. Compared to hash ag-
gregation, sort aggregation is significantly less memory-intensive,
and the aggregate value can be passed to the next operator imme-
diately after a run has been processed.

Query compilation. ClickHouse employs query compilation
based on LLVM to dynamically fuse adjacent plan operators [38, 53].
For example, the expressiona * b + ¢ + 1 can be combined into
a single operator instead of three operators. Besides expressions,
ClickHouse also employs compilation to evaluate multiple aggre-
gation functions at once (i.e. for GROUP BY) and for sorting with
more than one sort key. Query compilation decreases the number
of virtual calls, keeps data in registers or CPU caches, and helps
the branch predictor as less code needs to execute. Additionally,
runtime compilation enables a rich set of optimizations, such as
logical optimizations and peephole optimizations implemented in
compilers, and gives access to the fastest locally available CPU
instructions. The compilation is initiated only when the same reg-
ular, aggregation, or sorting expression is executed by different
queries more than a configurable number of times. Compiled query
operators are cached and can be reused by future queries.

Primary key index evaluation. ClickHouse evaluates WHERE
conditions using the primary key index if a subset of filter clauses
in the condition’s conjunctive normal form constitutes a prefix
of the primary key columns. The primary key index is analyzed
left-to-right on lexicographically sorted ranges of key values. Filter
clauses corresponding to a primary key column are evaluated using
ternary logic - they are all true, all false, or mixed true/false for
the values in the range. In the latter case, the range is split into
sub-ranges which are analyzed recursively. Additional optimiza-
tions exist for functions in filter conditions. First, functions have
traits describing their monotonicity, e.g, toDayOfMonth(date) is
piecewise monotonic within a month. Monotonicity traits allow
to infer if a function produces sorted results on sorted input key
value ranges. Second, some functions can compute the preimage
of a given function result. This is used to replace comparisons of
constants with function calls on the key columns by comparing the
key column value with the preimage. For example, toYear(k) =
2024 can be replaced by k >= 2024-01-01 && k < 2025-01-01.

Data skipping. ClickHouse tries to avoid data reads at query
runtime using the data structures presented in Section 3.2. Addi-
tionally, filters on different columns are evaluated sequentially in
order of descending estimated selectivity based on heuristics and
(optional) column statistics. Only data chunks that contain at least
one matching row are passed to the next predicate. This gradually
decreases the amount of read data and the number of computations
to be performed from predicate to predicate. The optimization is
only applied when at least one highly selective predicate is present;
otherwise, the latency of the query would deteriorate compared to
an evaluation of all predicates in parallel.

Hash tables. Hash tables are fundamental data structures for
aggregation and hash joins. Choosing the right type of hash table is
critical to performance. ClickHouse instantiates various hash tables
(over 30 as of March 2024) from a generic hash table template with
the hash function, allocator, cell type, and resize policy as variation
points. Depending on the data type of the grouping columns, the
estimated hash table cardinality, and other factors, the fastest hash
table is selected for each query operator individually.® Further
optimizations implemented for hash tables include:

Blog post: clickhou.se/jit
8Blog post: clickhou.se/hashtables

3739

SELECT UserID, h1.Referer,

FROM hits AS h1

JOIN hits AS h2 ON h1.UserID = h2.UserID
AND h1.URL = h2.Referer

SETTINGS join_algorithm 'parallel_hash'’

h1.URL, h2.URL

_—|8 - N
HashTableBuild = = — JoinLookup
4 & | Hash Table N
—»| MergeTreeScan MergeTreeScan |«
y 5 o=)
HashTableBuild = sh —— JoinLookup
A il &| Hash Table N A
MergeTreeScan MergeTreeScan
] == .
HashTableBuild = = d = JoinLookup
% 8 Hash Table 2
MergeTreeScan MergeTreeScan
HITS TABLE
UserlD | Referer URL

BUILD PHASE PROBE PHASE

Figure 9: Parallel hash join with three hash table partitions.

a two-level layout with 256 sub-tables (based on the first byte of
the hash) to support huge key sets,

string hash tables [79] with four sub-tables and different hash
functions for different string lengths,

lookup tables which use the key directly as bucket index (i.e. no
hashing) when there are only few keys,

values with embedded hashes for faster collision resolution when
comparison is expensive (e.g. strings, ASTs),

creation of hash tables based on predicted sizes from runtime
statistics to avoid unnecessary resizes,

allocation of multiple small hash tables with the same creation/de-
struction lifecycle on a single memory slab,

instant clearing of hash tables for reuse using per-hash-map and
per-cell version counters,

usage of CPU prefetch (__builtin_prefetch) to speed up the
retrieval of values after hashing the key.

Joins. As ClickHouse originally supported joins only rudimen-
tarily, many use cases historically resorted to denormalized tables.
Today, the database offers all join types available in SQL (inner, left-
/right/full outer, cross, as-of), as well as different join algorithms
such as hash join (naive, grace), sort-merge join, and index join for
table engines with fast key-value lookup (usually dictionaries).’

Since joins are among the most expensive database operations,
it is important to provide parallel variants of the classic join algo-
rithms, ideally with configurable space/time trade-offs. For hash
joins, ClickHouse implements the non-blocking, shared partition
algorithm from [7]. For example, the query in Figure 9 computes
how users move between URLs via a self-join on a page hit statistics
table. The build phase of the join is split into three lanes, covering
three disjoint ranges of the source table. Instead of a global hash
table, a partitioned hash table is used. The (typically three) worker
threads determine the target partition for each input row of the
build side by computing the modulo of a hash function. Access to

9Blog post: clickhou.se/joins

https://clickhou.se/jit
https://clickhou.se/hashtables
https://clickhou.se/joins

the hash table partitions is synchronized using Gather exchange
operators. The probe phase finds the target partition of its input
tuples similarly. While this algorithm introduces two additional
hash calculations per tuple, it greatly reduces latch contention in
the build phase, depending on the number of hash table partitions.

4.5 Workload Isolation

ClickHouse offers concurrency control, memory usage limits, and
I/O scheduling, enabling users to isolate queries into workload
classes. By setting limits on shared resources (CPU cores, DRAM,
disk and network I/O) for specific workload classes, it ensures these
queries do not affect other critical business queries.

Concurrency control prevents thread oversubscription in scenar-
ios with a high number of concurrent queries. More specifically,
the number of worker threads per query are adjusted dynamically
based on a specified ratio to the number of available CPU cores.

ClickHouse tracks byte sizes of memory allocations at the server,
user, and query level, and thereby allows to set flexible memory
usage limits. Memory overcommit enables queries to use additional
free memory beyond the guaranteed memory, while assuring mem-
ory limits for other queries. Furthermore, memory usage for aggre-
gation, sort, and join clauses can be limited, causing fallbacks to
external algorithms when the memory limit is exceeded.

Lastly, I/O scheduling allows users to restrict local and remote
disk accesses for workload classes based on a maximum bandwidth,
in-flight requests, and policy (e.g. FIFO, SFC [32]).

5 INTEGRATION LAYER

Real-time decision-making applications often depend on efficient
and low-latency access to data in multiple locations. Two approaches
exist to make external data available in an OLAP database. With
push-based data access, a third-party component bridges the data-
base with external data stores. One example of this are specialized
extract-transform-load (ETL) tools which push remote data to the
destination system. In the pull-based model, the database itself
connects to remote data sources and pulls data for querying into
local tables or exports data to remote systems. While push-based
approaches are more versatile and common, they entail a larger ar-
chitectural footprint and scalability bottleneck. In contrast, remote
connectivity directly in the database offers interesting capabilities,
such as joins between local and remote data, while keeping the
overall architecture simple and reducing the time to insight.

The rest of the section explores pull-based data integration meth-
ods in ClickHouse, aimed to access data in remote locations. We
note that the idea of remote connectivity in SQL databases is not
new. For example, the SQL/MED standard [35], introduced in 2001
and implemented by PostgreSQL since 2011 [65], proposes for-
eign data wrappers as a unified interface for managing external
data. Maximum interoperability with other data stores and storage
formats is one of ClickHouse’s design goals. As of March 2024,
ClickHouse offers to the best of our knowledge the most built-in
data integration options across all analytical databases.

External Connectivity. ClickHouse provides 50+ integration
table functions and engines for connectivity with external sys-
tems and storage locations, including ODBC, MySQL, PostgreSQL,

10Up-to-date list live query over system table: clickhou.se/query-integrations

3740

SQLite, Kafka, Hive, MongoDB, Redis, S3/GCP/Azure object stores
and various data lakes. We break them further down into categories.

Temporary access with Integration Table Functions. Table func-
tions can be invoked in the FROM clause of SELECT queries to read
remote data for exploratory ad-hoc queries. Alternatively, they can
be used to write data to remote stores using INSERT INTO TABLE
FUNCTION statements.

Persisted access. Three methods exist to create permanent con-
nections with remote data stores and processing systems.

First, integration table engines represent a remote data source,
such as a MySQL table, as a persistent local table. Users store the
table definition using CREATE TABLE AS syntax, combined with a
SELECT query and the table function. It is possible to specify a cus-
tom schema, for example, to reference only a subset of the remote
columns, or use schema inference to determine the column names
and equivalent ClickHouse types automatically. We further distin-
guish passive and active runtime behavior: Passive table engines
forward queries to the remote system and populate a local proxy
table with the result. In contrast, active table engines periodically
pull data from the remote system or subscribe to remote changes,
for example, through PostgreSQL’s logical replication protocol. As
a result, the local table contains a full copy of the remote table.

Second, integration database engines map all tables of a table
schema in a remote data store into ClickHouse. Unlike the former,
they generally require the remote data store to be a relational data-
base and additionally provide limited support for DDL statements.

Third, dictionaries can be populated using arbitrary queries
against almost all possible data sources with a corresponding in-
tegration table function or engine. The runtime behavior is active
since data is pulled in constant intervals from remote storage.

Data Formats. To interact with 3rd party systems, modern
analytical databases must also be able to process data in any for-
mat. Besides its native format, ClickHouse supports 90+11 formats,
including CSV, JSON, Parquet, Avro, ORC, Arrow, and Protobuf.
Each format can be an input format (which ClickHouse can read),
an output format (which ClickHouse can export), or both. Some
analytics-oriented formats like Parquet are also integrated with
query processing, i.e, the optimizer can exploit embedded statistics,
and filters are evaluated directly on compressed data.

Compatibility interfaces. Besides its native binary wire proto-
col and HTTP, clients can interact with ClickHouse over MySQL or
PostgreSQL wire-protocol-compatible interfaces. This compatibility
feature is useful to enable access from proprietary applications (e.g.
certain business intelligence tools), where vendors have not yet
implemented native ClickHouse connectivity.

6 PERFORMANCE AS A FEATURE

This section presents built-in tools for performance analysis and
evaluates the performance using real-world and benchmark queries.

6.1 Built-in Performance Analysis Tools

A wide range of tools is available to investigate performance bottle-
necks in individual queries or background operations. Users interact
with all tools through a uniform interface based on system tables.

11Up-to-date list live query over system table: clickhou.se/query-formats

https://clickhou.se/query-integrations
https://clickhou.se/query-formats

2957
3291011

[l Cold geometric mean [l Hot geometric mean

~
[}
X

1544295 16.94 14.90

523 4.82 1233 8.39

3.06

Relative time
(log scale)

1.23 1572857

MySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Figure 10: Relative cold and hot runtimes of ClickBench.

Server and query metrics. Server-level statistics, such as the
active part count, network throughput, and cache hit rates, are
supplemented with per-query statistics, like the number of blocks
read or index usage statistics. Metrics are calculated synchronously
(upon request) or asynchronously at configurable intervals.

Sampling profiler. Callstacks of the server threads can be col-
lected using a sampling profiler. The results can optionally be ex-
ported to external tools such as flamegraph visualizers.

OpenTelemetry integration. OpenTelemetry is an open stan-
dard for tracing data flows across multiple data processing sys-
tems [8]. ClickHouse can generate OpenTelemetry log spans with
a configurable granularity for all query processing steps, as well as
collect and analyze OpenTelemetry log spans from other systems.

Explain query. Like in other databases, SELECT queries can
be preceded by EXPLAIN for detailed insights into a query’s AST,
logical and physical operator plans, and execution-time behavior.

6.2 Benchmarks

While benchmarking has been criticized for being not realistic
enough [10, 52, 66, 74], it is still useful to identify the strengths
and weaknesses of databases. In the following, we discuss how
benchmarks are used to evaluate the performance of ClickHouse.

6.2.1 Denormalized Tables. Filter and aggregation queries on de-
normalized fact tables historically represent the primary use case of
ClickHouse. We report runtimes of ClickBench, a typical workload
of this kind that simulates ad-hoc and periodic reporting queries
used in clickstream and traffic analysis. The benchmark consists
of 43 queries against a table with 100 million anonymized page
hits, sourced from one of the web’s largest analytics platforms. An
online dashboard [17] shows measurements (cold/hot runtimes,
data import time, on-disk size) for over 45 commercial and research
databases as of June 2024. Results are submitted by independent con-
tributors based on the publicly available data set and queries [16].
The queries test sequential and index scan access paths and rou-
tinely expose CPU-, IO-, or memory-bound relational operators.
Figure 10 shows the total relative cold and hot runtimes for se-
quentially executing all ClickBench queries in databases frequently
used for analytics. The measurements were taken on a single-node
AWS EC2 c6a.4xlarge instance with 16 vCPUs, 32 GB RAM, and
5000 IOPS / 1000 MiB/s disk. Comparable systems were used for
Redshift (ra3.4xlarge, 12 vCPUs, 96 GB RAMlz) and Snowflake
(warehouse size S: 2x8 vCPUs, 2x16 GB RAM!). The physical data-
base design is tuned only lightly, for example, we specify primary
keys, but do not change the compression of individual columns,
create projections, or skipping indexes. We also flush the Linux
page cache prior to each cold query run, but do not adjust database

12AWS docs: clickhou.se/redshift-sizes
BBlog post: clickhou.se/snowflake-sizes

3741

2
H LTS version
GE) 1.8
L2
GE) 1.6
S
5
5 14
2
5
© 1.2
=
1 JulAug AprJul Mar Aug Mar Aug Mar Aug Mar Aug Mar
2018 2019 2020 2021 2022 2023 2024

Figure 11: Relative hot runtimes of VersionsBench 2018-2024.

‘01 Q2 Q3 Q4 Q5: Q6 Q7-Q9Q10Q11.Q12Q13Q14Q15Q16 Q17 Q18 Q19 Q20-Q22
‘1.86 413 7.010.39 3.590.831.53 1.0011.04.0.48 2.18

%1220 210 1.900.23 4.301.300.88 0.65{0.77:1.90 3.40

Contains correlated subqueries Specific optimizations are not implemented yet

Figure 12: Hot runtimes (in seconds) for TPC-H queries.

or operating system knobs. For every query, the fastest runtime
across databases is used as a baseline. Relative query runtimes for
other databases are calculated as (tg + 10ms)/(tg_paseline + 10ms).
The total relative runtime for a database is the geometric mean
of the per-query ratios. While the research database Umbra [54]
achieves the best overall hot runtime, ClickHouse outperforms all
other production-grade databases for hot and cold runtimes.

To track the performance of SELECTs in more diverse work-
loads over time, we use a combination of four benchmarks called
VersionsBench [19]. This benchmark is executed once per month
when a new release is published to assess its performance [20] and
identify code changes that potentially degraded performance!4:
Individual benchmarks include: 1. ClickBench (described above),
2. 15 MgBench [21] queries, 3. 13 queries against a denormalized
Star Schema Benchmark [57] fact table with 600 million rows.
4. 4 queries against NYC Taxi Rides with 3.4 billion rows [70]"°.

Figure 11 shows the development of the VersionsBench runtimes
for 77 ClickHouse versions between March 2018 and March 2024.
To compensate for differences in the relative runtime of individ-
ual queries, we normalize the runtimes using a geometric mean
with the ratio to the minimum query runtime across all versions as
weight. The performance of VersionBench improved by 1.72 X over
the past six years. Dates for releases with long-term support (LTS)
are marked on the x-axis. Although performance deteriorated tem-
porarily in some periods, LTS releases generally have comparable or
better performance than the previous LTS version. The significant
improvement in August 2022 was caused by the column-by-column
filter evaluation technique described in Section 4.4.

6.2.2 Normalized tables. In classical warehousing, data is often
modeled using star or snowflake schemas. We present runtimes of
TPC-H queries (scale factor 100) but remark that normalized tables
are an emerging use case for ClickHouse. Figure 12 shows the hot
runtimes of the TPC-H queries based on the parallel hash join algo-
rithm described in Section 4.4. The measurements were taken on a
single-node AWS EC2 cé6i.16xlarge instance with 64 vCPUs, 128 GB
RAM, and 5000 IOPS / 1000 MiB/s disk. The fastest of five runs

4Blog post: clickhou.se/performance-over-years
5Blog post: clickhou.se/nyc-taxi-rides-benchmark

https://clickhou.se/redshift-sizes
https://clickhou.se/snowflake-sizes
https://clickhou.se/performance-over-years
https://clickhou.se/nyc-taxi-rides-benchmark

was recorded. For reference, we performed the same measurements
in a Snowflake system of comparable size (warehouse size L, 8x8
vCPUs, 8x16 GB RAM). The results of eleven queries are excluded
from the table: Queries Q2, Q4, Q13, Q17, and Q20-22 include cor-
related subqueries which are not supported as of ClickHouse v24.6.
Queries Q7-Q9 and Q19 depend on extended plan-level optimiza-
tions for joins such as join reordering and join predicate pushdown
(both missing as of ClickHouse v24.6.) to achieve viable runtimes.
Automatic subquery decorrelation and better optimizer support
for joins are planned for implementation in 2024 [18]. Out of the
remaining 11 queries, 5 (6) queries executed faster in ClickHouse
(Snowflake). As aforementioned optimizations are known to be
critical for performance [27], we expect them to improve runtimes
of these queries further once implemented.

7 RELATED WORK

Analytical databases have been of great academic and commercial
interest in recent decades [1]. Early systems like Sybase IQ [48],
Teradata [72], Vertica [42], and Greenplum [47] were characterized
by expensive batch ETL jobs and limited elasticity due to their
on-premise nature. In the early 2010s, the advent of cloud-native
data warehouses and database-as-a-service offerings (DBaaS) such
as Snowflake [22], BigQuery [49], and Redshift [4] dramatically re-
duced the cost and complexity of analytics for organizations, while
benefiting from high availability and automatic resource scaling.
More recently, analytical execution kernels (e.g. Photon [5] and
Velox [62]) offer commodified data processing for use in different
analytical, streaming, and machine learning applications.

The most similar databases to ClickHouse, in terms of goals
and design principles, are Druid [78] and Pinot [34]. Both sys-
tems target real-time analytics with high data ingestion rates. Like
ClickHouse, tables are split into horizontal parts called segments.
While ClickHouse continuously merges smaller parts and option-
ally reduces data volumes using the techniques in Section 3.3, parts
remain forever immutable in Druid and Pinot. Also, Druid and
Pinot require specialized nodes to create, mutate, and search tables,
whereas ClickHouse uses a monolithic binary for these tasks.

Snowflake [22] is a popular proprietary cloud data warehouse
based on a shared-disk architecture. Its approach of dividing tables
into micro-partitions is similar to the concept of parts in ClickHouse.
Snowflake uses hybrid PAX pages [3] for persistence, whereas
ClickHouse’s storage format is strictly columnar. Snowflake also
emphasizes local caching and data pruning using automatically cre-
ated lightweight indexes [31, 51] as a source for good performance.
Similar to primary keys in ClickHouse, users may optionally create
clustered indexes to co-locate data with the same values.

Photon [5] and Velox [62] are query execution engines designed
to be used as components in complex data management systems.
Both systems are passed query plans as input, which are then ex-
ecuted on the local node over Parquet (Photon) or Arrow (Velox)
files [46]. ClickHouse is able to consume and generate data in these
generic formats but prefers its native file format for storage. While
Velox and Photon do not optimize the query plan (Velox performs
basic expression optimizations), they utilize runtime adaptivity tech-
niques, such as dynamically switching compute kernels depending
on the data characteristics. Similarly, plan operators in ClickHouse

3742

can create other operators at runtime, primarily to switch to ex-
ternal aggregation or join operators, based on the query memory
consumption. The Photon paper notes that code-generating de-
signs [38, 41, 53] are harder to develop and debug than interpreted
vectorized designs [11]. The (experimental) support for code gen-
eration in Velox builds and links a shared library produced from
runtime-generated C++ code, whereas ClickHouse interacts directly
with LLVM’s on-request compilation APL

DuckDB [67] is also meant to be embedded by a host process,
but additionally provides query optimization and transactions. It
was designed for OLAP queries mixed with occasional OLTP state-
ments. DuckDB accordingly chose the DataBlocks [43] storage
format, which employs light-weight compression methods such as
order-preserving dictionaries or frame-of-reference[2] to achieve
good performance in hybrid workloads. In contrast, ClickHouse is
optimized for append-only use cases, i.e. no or rare updates and
deletes. Blocks are compressed using heavy-weight techniques like
LZ4, assuming that users make liberal use of data pruning to speed
up frequent queries and that I/O costs dwarf decompression costs
for the remaining queries. DuckDB also provides serializable trans-
actions based on Hyper’s MVCC scheme [55], whereas ClickHouse
only offers snapshot isolation.

8 CONCLUSION AND OUTLOOK

We presented the architecture of ClickHouse, an open-source, high-
performance OLAP database. With a write-optimized storage layer
and a state-of-the-art vectorized query engine at its foundation,
ClickHouse enables real-time analytics over petabyte-scale data
sets with high ingestion rates. By merging and transforming data
asynchronously in the background, ClickHouse efficiently decou-
ples data maintenance and parallel inserts. Its storage layer enables
aggressive data pruning using sparse primary indexes, skipping
indexes, and projection tables. We described ClickHouse’s imple-
mentation of updates and deletes, idempotent inserts, and data
replication across nodes for high availability. The query processing
layer optimizes queries using a wealth of techniques, and paral-
lelizes execution across all server and cluster resources. Integration
table engines and functions provide a convenient way to interact
with other data management systems and data formats seamlessly.
Through benchmarks, we demonstrate that ClickHouse is amongst
the fastest analytical databases on the market, and we showed sig-
nificant improvements in the performance of typical queries in
real-world deployments of ClickHouse throughout the years.

All features and enhancements planned for 2024 can be found on
the public roadmap [18]. Planned improvements include support for
user transactions, PromQL [69] as an alternative query language, a
new datatype for semi-structured data (e.g. JSON), better plan-level
optimizations of joins, as well as an implementation of light-weight
updates to complement light-weight deletes.

ACKNOWLEDGMENTS

As per version 24.6, SELECT * FROM system.contributors re-
turns 1994 individuals who contributed to ClickHouse. We would
like to thank the entire engineering team at ClickHouse Inc. and
ClickHouse’s amazing open-source community for their hard work
and dedication in building this database together.

REFERENCES

(1]

[2

=

3

=

&

=

(1]
[12]

[13]
[14]

[15

[16]

(18

[19]

[20

[21]

[22

[23]

Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreaos, and Samuel
Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. https://doi.org/10.1561/9781601987556

Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compres-
sion and Execution in Column-Oriented Database Systems. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (SIGMOD
’06). 671-682. https://doi.org/10.1145/1142473.1142548

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB "01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 169-180.

Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Poly-
chroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subra-
manian, and Doug Terry. 2022. Amazon Redshift Re-Invented. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD °22). Association for Computing Machinery, New York, NY, USA,
2205-2217. https://doi.org/10.1145/3514221.3526045

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar,
Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman
van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022. Photon: A Fast
Query Engine for Lakehouse Systems (SIGMOD °22). Association for Computing
Machinery, New York, NY, USA, 2326-2339. https://doi.org/10.1145/3514221.
3526054

Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Computing Survey 13, 2 (1981), 185-221.
https://doi.org/10.1145/356842.356846

Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD °11). Association for Computing Machinery, New York, NY,
USA, 37-48. https://doi.org/10.1145/1989323.1989328

Daniel Gomez Blanco. 2023. Practical OpenTelemetry. Springer Nature.

Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422-426. https://doi.org/10.1145/362686.
362692

Peter Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In Performance
Characterization and Benchmarking. 61-76. https://doi.org/10.1007/978-3-319-
04936-6_5

Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR.

Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Compres-
sion of Double-Precision Floating-Point Data. In Data Compression Conference
(DCC). 293-302. https://doi.org/10.1109/DCC.2007.44

Jeff Carpenter and Eben Hewitt. 2016. Cassandra: The Definitive Guide (2nd ed.).
O’Reilly Media, Inc.

Bernadette Charron-Bost, Fernando Pedone, and André Schiper (Eds.). 2010.
Replication: Theory and Practice. Springer-Verlag.

chDB. 2024. chDB - an embedded OLAP SQL Engine. Retrieved 2024-06-20 from
https://github.com/chdb-io/chdb

ClickHouse. 2024. ClickBench: a Benchmark For Analytical Databases. Retrieved
2024-06-20 from https://github.com/ClickHouse/ClickBench

ClickHouse. 2024. ClickBench: Comparative Measurements. Retrieved 2024-06-20
from https://benchmark.clickhouse.com

ClickHouse. 2024. ClickHouse Roadmap 2024 (GitHub). Retrieved 2024-06-20
from https://github.com/ClickHouse/ClickHouse/issues/58392

ClickHouse. 2024. ClickHouse Versions Benchmark. Retrieved 2024-06-20 from
https://github.com/ClickHouse/ClickBench/tree/main/versions

ClickHouse. 2024. ClickHouse Versions Benchmark Results. Retrieved 2024-06-20
from https://benchmark.clickhouse.com/versions/

Andrew Crotty. 2022. MgBench. Retrieved 2024-06-20 from https://github.com/
andrewcrotty/mgbench

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215-226. https:

//doi.org/10.1145/2882903.2903741
Patrick Damme, Annett Ungethiim, Juliana Hildebrandt, Dirk Habich, and Wolf-

gang Lehner. 2019. From a Comprehensive Experimental Survey to a Cost-Based

3743

™
=)

[25]

[26

(28]

[29]

[30

[31

(32]

(33]

(34]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

Selection Strategy for Lightweight Integer Compression Algorithms. ACM Trans.
Database Syst. 44, 3, Article 9 (2019), 46 pages. https://doi.org/10.1145/3323991
Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus RabbitMQ:
A Comparative Study of Two Industry Reference Publish/Subscribe Implementa-
tions: Industry Paper (DEBS ’17). Association for Computing Machinery, New
York, NY, USA, 227-238. https://doi.org/10.1145/3093742.3093908

LLVM documentation. 2024. Auto-Vectorization in LLVM. Retrieved 2024-06-20
from https://llvm.org/docs/Vectorizers. html

Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-value Store Serving Large-scale
Applications. ACM Transactions on Storage 17, 4, Article 26 (2021), 32 pages.
https://doi.org/10.1145/3483840

Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H choke points and their optimizations. Proc. VLDB Endow. 13,
8 (2020), 1206-1220. https://doi.org/10.14778/3389133.3389138

Ted Dunning. 2021. The t-digest: Efficient estimates of distributions. Software
Impacts 7 (2021). https://doi.org/10.1016/j.simpa.2020.100049

Martin Faust, Martin Boissier, Marvin Keller, David Schwalb, Holger Bischoff,
Katrin Eisenreich, Franz Farber, and Hasso Plattner. 2016. Footprint Reduction
and Uniqueness Enforcement with Hash Indices in SAP HANA. In Database and
Expert Systems Applications. 137-151. https://doi.org/10.1007/978-3-319-44406-
2_11

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In
AofA: Analysis of Algorithms, Vol. DMTCS Proceedings vol. AH, 2007 Conference
on Analysis of Algorithms (AofA 07). Discrete Mathematics and Theoretical
Computer Science, 137-156. https://doi.org/10.46298/dmtcs.3545

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2009. Database
Systems - The Complete Book (2. Ed.).

Pawan Goyal, Harrick M. Vin, and Haichen Chen. 1996. Start-time fair queueing:
a scheduling algorithm for integrated services packet switching networks. 26, 4
(1996), 157-168. https://doi.org/10.1145/248157.248171

Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (1993), 73-169. https://doi.org/10.1145/152610.152611
Jean-Francois Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank Shrivas-
tava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun Lee, Neha Pawar,
Jialiang Li, and Ravi Aringunram. 2018. Pinot: Realtime OLAP for 530 Million
Users. In Proceedings of the 2018 International Conference on Management of Data
(Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 583-594. https://doi.org/10.1145/3183713.3190661

ISO/IEC 9075-9:2001 2001. Information technology — Database language — SQL
— Part 9: Management of External Data (SQL/MED). Standard. International
Organization for Standardization.

Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, and Matei
Zaharia. 2023. Analyzing and Comparing Lakehouse Storage Systems. CIDR.
Project Jupyter. 2024. Jupyter Notebooks. Retrieved 2024-06-20 from https:
//jupyter.org/

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything You Always Wanted to Know about Compiled
and Vectorized Queries but Were Afraid to Ask. Proc. VLDB Endow. 11, 13 (sep
2018), 2209-2222. https://doi.org/10.14778/3275366.3284966

Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (Indianapolis, Indiana, USA) (SIGMOD ’10). Association for Computing Ma-
chinery, New York, NY, USA, 339-350. https://doi.org/10.1145/1807167.1807206
Donald E. Knuth. 1973. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley.

André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). 197-208. https://doi.org/10.1109/ICDE.2018.00027

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (aug 2012), 1790-1801. https://doi.org/10.
14778/2367502.2367518

Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco, Cali-
fornia, USA) (SIGMOD °16). Association for Computing Machinery, New York,
NY, USA, 311-326. https://doi.org/10.1145/2882903.2882925

Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (Snowbird, Utah, USA) (SIGMOD °14). Association for Com-
puting Machinery, New York, NY, USA, 743-754. https://doi.org/10.1145/2588555.
2610507

https://doi.org/10.1561/9781601987556
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1109/DCC.2007.44
https://github.com/chdb-io/chdb
https://github.com/ClickHouse/ClickBench
https://benchmark.clickhouse.com
https://github.com/ClickHouse/ClickHouse/issues/58392
https://github.com/ClickHouse/ClickBench/tree/main/versions
https://benchmark.clickhouse.com/versions/
https://github.com/andrewcrotty/mgbench
https://github.com/andrewcrotty/mgbench
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/3323991
https://doi.org/10.1145/3093742.3093908
https://llvm.org/docs/Vectorizers.html
https://doi.org/10.1145/3483840
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.1016/j.simpa.2020.100049
https://doi.org/10.1007/978-3-319-44406-2_11
https://doi.org/10.1007/978-3-319-44406-2_11
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1145/248157.248171
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/3183713.3190661
https://jupyter.org/
https://jupyter.org/
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1109/ICDE.2018.00027
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507

[45

[46]

[47]

[48

[49

[50

[51]

[52

[53]

[54]

[55]

[56

[57]

[58

[59

[60]

(61

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). 38-49. https://doi.org/10.1109/ICDE.
2013.6544812

Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023. A
Deep Dive into Common Open Formats for Analytical DBMSs. 16, 11 (jul 2023),
3044-3056. https://doi.org/10.14778/3611479.3611507

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen
Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang
Wu, Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid
Database for Transactional and Analytical Workloads (SIGMOD °21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2530-2542. https:
//doi.org/10.1145/3448016.3457562

Roger MacNicol and Blaine French. 2004. Sybase IQ Multiplex - Designed for An-
alytics. In Proceedings of the Thirtieth International Conference on Very Large Data
Bases - Volume 30 (Toronto, Canada) (VLDB ’04). VLDB Endowment, 1227-1230.
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive
SQL Analysis at Web Scale. Proc. VLDB Endow. 13, 12 (aug 2020), 3461-3472.
https://doi.org/10.14778/3415478.3415568

Microsoft. 2024. Kusto Query Language. Retrieved 2024-06-20 from https:
//github.com/microsoft/Kusto-Query-Language

Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight In-
dex Structure for Data Warehousing. In Proceedings of the 24rd International
Conference on Very Large Data Bases (VLDB 98). 476-487.

Jalal Mostafa, Sara Wehbi, Suren Chilingaryan, and Andreas Kopmann. 2022.
SciTS: A Benchmark for Time-Series Databases in Scientific Experiments and
Industrial Internet of Things. In Proceedings of the 34th International Conference
on Scientific and Statistical Database Management (SSDBM °22). Article 12. https:
//doi.org/10.1145/3538712.3538723

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (jun 2011), 539-550. https://doi.org/10.14778/
2002938.2002940

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-
cidr20.pdf

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (Melbourne, Victoria, Australia) (SSGMOD ’15). Association for Comput-
ing Machinery, New York, NY, USA, 677-689. https://doi.org/10.1145/2723372.
2749436

LevelDB on GitHub. 2024. LevelDB. Retrieved 2024-06-20 from https://github.
com/google/leveldb

Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009. The
Star Schema Benchmark and Augmented Fact Table Indexing. In Performance
Evaluation and Benchmarking. Springer Berlin Heidelberg, 237-252. https:
//doi.org/10.1007/978-3-642-10424-4_17

Patrick E. O’Neil, Edward Y. C. Cheng, Dieter Gawlick, and Elizabeth J. O’Neil.
1996. The log-structured Merge-Tree (LSM-tree). Acta Informatica 33 (1996),
351-385. https://doi.org/10.1007/s002360050048

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’14). 305-320. https://doi.org/doi/10.
5555/2643634.2643666

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351-385. https:
//doi.org/10.1007/s002360050048

Pandas. 2024. Pandas Dataframes. Retrieved 2024-06-20 from https://pandas.
pydata.org/

3744

[62

[63

[64

o
2

[66]

[67]

[68]

[69

[70

[72

[73

(74

[79

[80

(81

Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proc. VLDB Endow. 15, 12 (aug 2022), 3372-3384. https:
//doi.org/10.14778/3554821.3554829

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816-1827.
https://doi.org/10.14778/2824032.2824078

Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethink-
ing SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (SIGMOD ’15).
1493-1508. https://doi.org/10.1145/2723372.2747645

PostgreSQL. 2024. PostgreSQL - Foreign Data Wrappers. Retrieved 2024-06-20

from https://Wiki.postgresqLorg/wiki/Foreignfdataﬁwrap]ﬁrs))
Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Miihleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance
Testing. In Proceedings of the Workshop on Testing Database Systems (Houston,
TX, USA) (DBTest 18). Article 2, 6 pages. https://doi.org/10.1145/3209950.3209955
Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 1981-1984. https://doi.org/10.1145/3299869.3320212

Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-
Support in Main Memory. In Proceedings of the 25th International Conference on
Very Large Data Bases (VLDB °99). San Francisco, CA, USA, 78-89.

Navin C. Sabharwal and Piyush Kant Pandey. 2020. Working with Prometheus
Query Language (PromQL). In Monitoring Microservices and Containerized Appli-
cations. https://doi.org/10.1007/978-1-4842-6216-0_5

Todd W. Schneider. 2022. New York City Taxi and For-Hire Vehicle Data. Retrieved
2024-06-20 from https://github.com/toddwschneider/nyc-taxi-data

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-
Oriented DBMS. In Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB ’05). 553-564.

Teradata. 2024. Teradata Database. Retrieved 2024-06-20 from https://www.
teradata.com/resources/datasheets/teradata- database

Frederik Transier. 2010. Algorithms and Data Structures for In-Memory Text
Search Engines. Ph.D. Dissertation. https://doi.org/10.5445/IR/1000015824
Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In Proceedings of the Workshop
on Testing Database Systems (Houston, TX, USA) (DBTest’18). Article 1, 6 pages.
https://doi.org/10.1145/3209950.3209952

LZ4 website. 2024. LZ4. Retrieved 2024-06-20 from https://1z4.org/

PRQL website. 2024. PRQL. Retrieved 2024-06-20 from https://prql-lang.org
Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.
The Implementation and Performance of Compressed Databases. SIGMOD Rec.
29, 3 (sep 2000), 55-67. https://doi.org/10.1145/362084.362137

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,
USA, 157-168. https://doi.org/10.1145/2588555.2595631

Tiangi Zheng, Zhibin Zhang, and Xueqi Cheng. 2020. SAHA: A String Adaptive
Hash Table for Analytical Databases. Applied Sciences 10, 6 (2020). https:
//doi.org/10.3390/app10061915

Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database Operations
Using SIMD Instructions. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD °02). 145-156. https://doi.org/10.
1145/564691.564709

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE ’06). 59. https://doi.org/10.1109/ICDE.
2006.150

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.14778/3611479.3611507
https://doi.org/10.1145/3448016.3457562
https://doi.org/10.1145/3448016.3457562
https://doi.org/10.14778/3415478.3415568
https://github.com/microsoft/Kusto-Query-Language
https://github.com/microsoft/Kusto-Query-Language
https://doi.org/10.1145/3538712.3538723
https://doi.org/10.1145/3538712.3538723
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436
https://github.com/google/leveldb
https://github.com/google/leveldb
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/s002360050048
https://doi.org/doi/10.5555/2643634.2643666
https://doi.org/doi/10.5555/2643634.2643666
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.1145/2723372.2747645
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1007/978-1-4842-6216-0_5
https://github.com/toddwschneider/nyc-taxi-data
https://www.teradata.com/resources/datasheets/teradata-database
https://www.teradata.com/resources/datasheets/teradata-database
https://doi.org/10.5445/IR/1000015824
https://doi.org/10.1145/3209950.3209952
https://lz4.org/
https://prql-lang.org
https://doi.org/10.1145/362084.362137
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.3390/app10061915
https://doi.org/10.3390/app10061915
https://doi.org/10.1145/564691.564709
https://doi.org/10.1145/564691.564709
https://doi.org/10.1109/ICDE.2006.150
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 Architecture
	3 Storage Layer
	3.1 On-Disk Format
	3.2 Data Pruning
	3.3 Merge-time Data Transformation
	3.4 Updates and Deletes
	3.5 Idempotent Inserts
	3.6 Data Replication
	3.7 ACID Compliance

	4 Query Processing Layer
	4.1 SIMD Parallelization
	4.2 Multi-Core Parallelization
	4.3 Multi-Node Parallelization
	4.4 Holistic Performance Optimization
	4.5 Workload Isolation

	5 Integration Layer
	6 Performance as a Feature
	6.1 Built-in Performance Analysis Tools
	6.2 Benchmarks

	7 Related Work
	8 Conclusion and outlook
	Acknowledgments
	References

